Cummins-ORNL\FEERC Emissions CRADA:

NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines

W.P. Partridge (PI), J.A. Pihl, J.-S. Choi, M.-Y. Kim Oak Ridge National Laboratory

N. Currier (PI), A. Yezerets, K. Kamasamudram Cummins Inc.

Project ID: ACE032

Presenter: Bill Partridge partridgewp@ornl.gov

2013 DOE Vehicle Technologies Program
Annual Merit Review
May16, 2013, Arlington, Virginia

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- New SOW start: Sept. 2012
- Current end date: Sept. 2015
- ~13% Complete

Budget

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2012: \$450k
 - FY2013: \$400k

Barriers

- Emissions controls
 - Catalyst fundamentals,
 - Reactions & mechanistic insights
 - Catalyst models (design tools & imbedded)
 - Control strategies & OBD
- Combustion Efficiency
 - Shift emissions tradeoff to fuel efficiency
- Durability
 - Enhanced durability via knowledge-based controls
- Cost
 - Lower catalyst & sensor costs
 - Lower development costs

Partners

- ORNL & Cummins Inc.
- Several informal collaborators

Objectives & Relevance

Elucidate Practical & Basic Catalyst Nature

for enabling improved Modeling, Design & Control

Objectives

- Develop diagnostics to advance applied & basic catalyst insights
- Understand parameters controlling distributed NH₃ storage
- Model distributed steady state SCR performance

Relevance – Detailed Catalyst Insights impact:

- Design models
- Control strategies & models
- NH₃ dosing control
- Required engineering margins (engine-efficiency vs. -emissions tradeoffs)
- System capital & operation costs

Milestones

√2012 Milestones:

- Improve instrumental methods for transient analysis of catalyst state
 - Instantaneous NH₃ coverage & loading rate, instantaneous conversion

2013 Milestone (on target for Sept. 2013 completion):

- Assess distributed performance of degreened & field-aged commercial 2010 Cummins SCR catalyst samples with focus on mechanistic understandings
- Extend steady state distributed SCR model
 - Include transient & inhibition behavior
- Demonstrate & characterize NH₃ & Cu-oxidation-state sensor

Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for catalyst characterization to improve: catalyst models, design, state assessment & controls for fuel-efficient engine systems

Proprietary Models

- For development
- For OBD

Clean, Fuel-Efficient, Durable

Engines in the Marketplace

- Focus
- · Goals
- Strategy
- Analysis

JRNL

Diagnostics & Method Development

Catalyst Insights

- Reaction network
- Mechanisms
- Catalyst state & control measures

Improve Models

- With collaborators
- Kinetic parameters
- Use models to study catalysis

2007 6.7L ISB

Detailed Approach for 2013 Objectives

Spatiotemporal Intra-Catalyst Characterization to Enhance Performance, Control, Cost & Durability

- Cummins-ORNL CRADA Team identifies catalyst-performance barrier
 - Distributed NH₃ capacity is not well understood & impacts performance
- Develop procedures to measure intra-SCR distributed NH₃ capacity
- Apply diagnostics to characterize distributed SCR performance
 - NH₃ capacity, SCR, parasitic NH₃ oxidation, NO & NH₃ oxidation
- Correlate distributed NH₃ capacity with other performance parameters
 - Compare insights with SpaciFTIR results from other DOE project
- Model distributed SCR behavior in collaboration with Chalmers partners
 - Based on AVL Boost
 - Determine kinetic parameters from SpaciMS data
 - Precompetitive model of distributed steady state SCR performance
- Incorporate insights into Cummins' proprietary models
- Enable clean, fuel-efficient engine-catalyst systems

Technical Progress: Summary

Nature of Distributed NH₃ Capacity (New Insights)

- Correlating with distributed SCR conversion
- on Model Cu-Beta Zeolite catalyst
- on Commercial 2010 Cummins SAPO 34 catalyst
- Control by Adsorption Isotherm

Modeling Distributed Steady State SCR Performance

- Determining kinetic parameters from SpaciMS data
- Precompetitive AVL Boost distributed SCR model

Standard Protocols Resolve SCR Reaction Parameters

- Total NH₃ Capacity (TC)
- Coverage at inlet conditions
 - Maximum NH₃ at inlet conditions
 - i.e., inlet NH₃ concentration & Temp.

SCR Conditions

- SS Conversion & NH₃ slip
- Dynamic NH₃ Capacity (DC)
- DC: fraction of TC used for SCR
- Unused Capacity (UC) = TC-DC

NH₃ Coverage Distribution Imposed by Gas-Phase NH₃ Distribution

- Cu-Beta Zeolite catalyst, Standard SCR
- SCR zone shifts to catalyst front at higher temperatures
 - high NH₃ concentrations exist deeper into catalyst at lower temperature
- High NH₃ coverage at catalyst front where gas-phase NH₃ is high
 - Dynamic = Total capacity in high NH₃ concentration front section
- Dynamic-Total separation occurs at a common NH₃ level (ca. 50ppm NH₃)
- NH₃ coverage distribution changes with temperature
 - but Dynamic-Total capacity separation imposed by local gas-phase NH₃
 - & gas-phase NH₃ distribution is imposed by SCR conversion distribution

Cu-SAPO-34 Catalyst Shows Similar NH₃ Coverage Behavior

- Comparing CRADA insights to commercial catalyst behavior
 - Very different Model Cu-Beta-Zeolite & Commercial Cu-SAPO-34 catalysts
 - Validate & expand applicability of CRADA findings
- Dynamic = Total capacity above same NH₃ level for all conditions!
 - Separation at ~175ppm NH₃ for commercial catalyst (vs. ~50ppm for Cu-Beta-Z)
 - A case where Standard & Fast SCR are similar!
 - NH₃ coverage equilibrium reactions much faster than even Fast SCR

Local gas-phase NH₃ & Adsorption Isotherm control local NH₃ coverage

- SCR imposes gas-phase NH₃ distribution & local NH₃ concentration
- Local gas-phase NH₃ & adsorption isotherm dictate local NH₃ coverage
- NH₃ coverage distribution specified by gas-phase NH₃ distribution & isotherm

Isotherm & Gas-Phase NH₃ Distribution Set NH₃ Coverage Distribution

- Adsorption isotherm indicates equilibrium-coverage variation with NH₃
 - Total capacity measured at inlet NH₃, and decreases at higher temperatures
- Coverage variation is relatively flat in high-NH₃ region
 - practically: Dynamic ≈ Total capacity in this region
- Dynamic & Total capacity should separate around the isotherm knee
- SCR reduces the gas-phase NH₃ concentration along the catalyst length
 - lower local coverage equilibrium, Dynamic < Total capacity
- Specific SCR reaction does not change the isotherm
 - only changes where these zones occur spatially within the catalyst
- Adsorption isotherm shape varies with catalyst formulation
 - E.g., different NH₃ site types, coverage dependence,...

Intra-Catalyst Measurements Enable Calculation of Kinetic Parameters under Realistic Operating Conditions

- Based on KCK Cu-Beta-Zeolite catalyst & Standard SCR
- Kinetic parameters determined from steady state Intra-SCR SpaciMS data
 - NO oxidation, NH₃ oxidation, NH₃ Standard SCR (published in Coelho thesis)
 - Further demonstrates rich nature of intra-catalyst distributed (SpaciX) analysis
 - Enables determining kinetic parameters under realistic conditions
 - Avoids unrealistic temperatures &/or space velocity where chemistry may differ
- AVL BOOST model in good agreement with experimental measurements
 - Distributed NO & NH₃ oxidation, & SCR
 - Kinetic & equilibrium controlled temperature regimes
 - Zero Parasitic Oxidation despite significant neat NH₃ oxidation

Collaborations & Coordination

Cummins

CRADA Partner, Neal Currier (Co-PI)

- Chalmers (Prof. Olsson)
 - SCR measurements, kinetic analysis & modeling (Xavier Auvray & Filipa Coelho)
- Michigan Tech. University (Prof. Parker)
 - SpaciFTIR analysis of Cummins 2010 SCR catalyst (Josh Pihl)

DI MILANO

- Politecnico di Milano (Profs. Tronconi & Nova)
 - Precompetitive study of selected SCR mechanisms
 - Prof.s Tronconi & Nova to ORNL Oct. 15, 2012
 - PoliMi PhD student working at ORNL Oct.-March, 2012 (Maria Pia Ruggeri)
- CLEERS (ACE022, Wednesday 2:15pm)
 - Diagnostics, analysis & modeling coordination

- Institute of Chemical Technology, Prague (Prof. Marek & Dr. Kočí)
 - Precompetitive study of LNT N₂O chemistry (with CLEERS) INSTITUTE OF CHEMICAL TECHNOLOGY
 - KONTAKT II Grant from Czech Republic Government
 - Dr. Kočí working at ORNL April 16-20, 2012
 - ICTP PhD student working at ORNL Oct.-Dec., 2012 (Šárka Bártová)
- Dissemination via Publications & Presentations
 - 1 Archival Journal Publication & 12 Presentations

Future Work

2013 Work:

- Measure distributed chemistry of commercial SCR
 - degreened & field-aged 2010 Cummins SCR samples
 - Standard & Fast SCR; 200, 300 & 400°C
- Extend steady state distributed SCR model (w/ Chalmers)
 - Include transient & inhibition behavior
- Investigate mechanistic aspects of selected SCR reactions (w/ PoliMi)
- Continue collaborations with CLEERS, PoliMi, ICT Prague & Chalmers
- Demonstrate & characterize NH₃ & Cu-oxidation-state sensor

2014 Work:

- Measurements to further understand commercial SCR performance
 - Alternate, incremental and various methods for ageing
 - Focus on insights for improved modeling, design and control
- Exercise SCR model to understand selected inhibition nature

Summary

Relevance

- CRADA work enables improved catalyst knowledge, models, design & control
- This reduces catalyst system costs & required engine-efficiency tradeoffs
- This in turn enables improved fuel economy

Approach

- Develop & apply diagnostics to characterize catalyst nature
- Analyze data to understand mechanistic details of how the catalyst functions
- Develop improved catalyst models based on improved catalyst knowledge

Technical Accomplishments

- New insights regarding parameters controlling distributed NH3 coverage
- SpaciX data allows determining kinetic parameters under realistic operating conditions
- Steady state distributed SCR model accurately predicts catalyst performance

Collaborations

- Numerous university collaborations resulting in presentations, publications and advances
- Coordination & collaboration with other DOE projects to maximize benefit

Future Work

- Analysis & tuning of EGR mixing model identify mixing and model-data difference origins
- EGR Probe Improvements: interference identification & probe-to-probe variations
- Diagnostic identification & development for addressing next-generation efficiency barriers

Technical Back-Up Slides

Cummins 4-Step Protocol Resolves Reaction Parameters

- Step1: NO oxidation
- Step2: SS NO_x & NH₃ conversions, Parasitic NH₃ oxidation, Dynamic NH₃ capacity
- Step3: NO_x-free NH₃ oxidation, Unused NH₃ capacity
- Step4: NO oxidation, Total NH₃ capacity

Total = Dynamic + Unused